Trigonometric Ratio Calculator and Values Table – Trick to Calculate
You can either use the calculator to find the Trigonometric Values of any angles or also have a look at our value chart that shows the values of standard angles only.
Trigonometric Ratio/Function Calculator
View or Download Trigonometric Ratio Value Table of Standard Angles in PDF or Image (JPEG) format
Whether you are looking for Sexagesimal System or Circular System Trigonometric Table, this table will do the job.
How to easily Remember the Trigonometric Ratio Value of Standard Angles?
What are the Standard angles?
Standard Angles Mean Here Are: 0°, 30°, 45°, 60°, 90°
Trick to Calculate the Sine θ(Sin θ) Trigonometric Ratio Value Easily
Divide the numbers 0, 1, 2, 3, and 4 by 4 and get their Square root to get the Sine value of standard angles.
- sin 0° will be √(0⁄4) = 0
- sin 30° will be √(1⁄4) = 1⁄2
- sin 45° will be √(2⁄4) = 1⁄√2
- sin 60° will be √(3⁄4) = √3⁄2
- sin 90° will be √(4⁄4) = 1
Trick to Calculate the Cosine θ(Cos θ) Trigonometric Ratio Value Easily
cos standard angles (0°, 30°, 45°, 60°, 90°) = sin standard angles (90°, 60°, 45°, 30°, 0°).
So if you write the value of sin’s standard angles in the reverse order that will give you the value of cos standard angles.
- cos 0° = sin 90° = 1
- cos 30° = sin 60° = √3⁄2
- cos 45° = sin 45° = 1⁄√2
- cos 60° = sin 30° = 1⁄2
- cos 90° = sin 0° = 0
When we already know the value of Sin and Cos it’s easy to get the Value of Tangent θ(Tag θ). Just divide the value of Sin by Cos to get the value of Tan
Here is a video to learn
- tan 0° = sin0°⁄cos0° = 0/1 = 0
- tan 30° = sin30°⁄cos30° = 1/2/√3/2 = 1⁄√3
- tan 45° = sin45°⁄cos45° = 1/√2/1/√2. = 1
- tan 60° = sin60°⁄cos60° = √3/2/1/2. = √3
- tan 90° = sin90°⁄cos90° = 1/0 = undefined (infinity)
Cotangent or cot θ: Easy way to keep in mind
cot standard angles (0°, 30°, 45°, 60°, 90°) = tan standard angles (90°, 60°, 45°, 30°, 0°)
The point here is that you just need to write the value of tangent from the bottom that will be the value of cot.
- cot 0° = tan 90° = undefined (infinity)
- cot 30° = tan 60° = √3
- cot 45° = tan 45° = 1
- cot 60° = tan 30° = 1⁄√3
- cot 90° = tan 0° = 0
Cosecant or cosec or cos θ: Easy way to calculate
As we already learned how to get the value of sin. all you have to do is divide 1 by sin value and you get the value of cosec
- cosec 0° = 1⁄sin0° = 1⁄0 = undefined (infinity)
- cosec 30° = 1⁄sin30° = 1⁄1/2 = 2
- cosec 45° = 1⁄sin45° = 1⁄1/√2 = √2
- cosec 60° = 1⁄sin60° = 1⁄√3/2 = 2⁄√3
- cosec 90° = 1⁄sin90° = 1⁄1 = 1
Secant or sec θ: Remember easily
sec standard angles (0°, 30°, 45°, 60°, 90°) = cosec standard angles (90°, 60°, 45°, 30°, 0°)
The point here is that you just need to write the value of cosec from the bottom that will be the value of sec.
- sec 0° = cosec 90° = 1
- sec 30° = cosec 60° = 2⁄√3
- sec 45° = cosec 45° = √2
- sec 60°= cosec 30° = 2
- sec 90° = cosec 0° = undefined (infinity)